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RESIDUAL THERMAL STRESSES IN
GRAPHITE/PEEK (APC-2) LAMINATES

By

Y. Jack Weitsman and K. Lee

The University of Tennessee at Knoxville

Abstract

Thermoplastic resin composites undergo a substantial temperature drop during
their post-manufacturing cool-down and sustain substantial residual stresses due
to mutual geometric constraints among the muiti-directional plies. In view of

the time-dependent thermomechanical response of the
exhibit strong dependence on cool-down history. This

resin the residual stresses
paper demonstrates that it

is possible to obtain an optimal cool-down path which minimizes the residual

thermal stresses in APC-2 composites.
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1. INTRODUCTION

APC-2 (graphite/PEEK) composites exhibit substantial time-dependent stress-
strain response, especially at high temperatures, and a very large disparity be-
tween the longitudinal and transverse coefficients of thermal expansion. In ad-

dition, the processing of APC-2 involves cool-down from Ty = 400°C to Tg = 20°C
- which is about twice the temperature excursion sustained by graphite/ epoxy
composites. The above factors produce significant residual thermal stresses in
multi-directionally reinforced laminates, which exceed the range of linear behav-
ior. In view of the time-dependent response of PEEK, these stresses are sensitive
to temperature history.

It seems that the most complete characterization to date of the time-dependent
response of PEEK and unidirectionally reinforced APC-2 coupons was obtained
by Xiao [1], and typical creep data at various levels of temperature are shown in
Figure 1. These, and supplementary experimental results not shown here, en-
abled Xiao to represent the time dependent response of PEEK and APC-2 by
means of the non-linear viscoelastic model of Schapery [2]. However, it is im-
portant to note that the creep data in ref. [1] were collected under isothermal con-

ditions and are limited to the temperature range of 20°C<T<200°C. It was shown
in ref. [3] that the implementation of Schapery's model requires additional creep
data under transient temperature conditions. Consequently, Xiao's characteriza-
tion contains an uncertain component. The time-dependent response of APC-2
laminates can be predicted from the behavior of a single ply by means of classical
laminate theory [4] upon the utilization of Schapery’'s model and employment of
the quasi-elastic viscoelastic approximation [5].

When linearly viscoelastic materials undergo a prescribed, geometrically con-
strained temperature drop over a finite, predetermined, time interval it is possi-
ble to find an optimal cool-down path To(t) which results in minimal residual
stresses. Such paths were found for thermorheologically simple [6] - [8] and
thermorheologically complex [9] viscoelastic responses. However, the foregoing
analyses do not apply to APC-2 composites because of the substantial non-linear-
ity which occurs during their cool-down. Consequently, the extension of the op-
timization scheme to account for non-linear behavior is the subject of the
present work.

2. ANALYSIS

2.1 Basic Equations

The linear thermo-elastic response of a uni-directionally reinforced ply undergo-

ing a temperature excursion AT = T - T) from some stress-free reference tempera-
ture T, (say), is given by (4]
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where standard symbols were used and subscripts L and T denote longitudinal
and transverse directions, respectively. In the particular case of a symmetric bal-
anced cross-ply lay-up a straight forward employment of laminate theory yields
the following expression for the laminate-level residual thermal stresses

O, =-0r = - G
o =-1ETaAT ()
where

=(1+vyL)

1+viTET
T+ —J_) and a=aT-0L (3)
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Note that the form of equation (2) remains valid for other symmetric lay-ups (in
particular, quasi-isotropic lay-ups), but with different expressions for r. In the
case of APC-2, the most pronounced time dependence occurs in the transverse
modulus Ey. However, since E7/E << 1, we may ignore the time dependence of
r and let r = 0.9125 to within £ 2%. In the isothermal case with the stress free

temperature denoted by T, where T = constant and AT = T; - T, employment of
Schapery’'s non-linear viscoelastic model modifies equation (2) to read as follows

[2]:

t

Glt)=-r aVz(T)I Hz) - &) [dVITIAT) 7ddd 4)
0

where the product V(T) = V{(T)V(T) is the vertical shift required to coalesce iso-
thermal data (say creep) to form a "master curve."* In addition, the "reduced
times”, &(t) and &(1) in equation (4) are given by

u
&u) = I dp/a(T; o(p)) 5)
0

In equation (5) a(T;0) is the horizontal shift factor required to coalesce isothermal
data (say creep) to form a "master curve.” Though both "V" and "a" may, in

principle, depend on o - it appears that the non-linearity of the response can be
expressed through a(T;o) alone. Under fluctuating temperatures, with T = T(1), it
is necessary to re-write equation (4) with V,(T()) and V1(T(1)). In this case we
also have AT = AT(1) in equation (4) and a = a(T(p);6(p)) in equation (5).

* It is obvious from equation (4) that for T = constant o(t) depends only on V(T) and not on V(T) and
V,(T) separately. This no longer holds for fluctuating temperatures.




2.2 Reduction of APC-2 Response Data

The isothermal creep data shown in Figure 1 were reduced by Xiao [1] to expres-
sions which fit Schapery's model. However, the present analysis requires values
which involve the relaxation modulus E(t), rather than creep compliance D(t).
E(t) was obtained from creep-response functions by the well known relation [5]:

_ 1 sin(mp(t)) _dlogD(t)
Ht)= DO =p(t) where pit) = gt

Values of E(T) vs. log t are plotted in Figure 2. The vertical shift factors V,(T) and

V,(T) for relaxation are taken to be V; = h3! and V; = h;! where h;, h; are vertical
shift factors for creep. Since ref. [1] provides only the product h(T) = h;(T)h,(T),

we take V(T) = h(T)"!. The horizontal shift factor a(T;0) was approximated by the
following expression: a(T;0) = af{T)ad(0) where as(c) = exp [-a (1-1), for 1> 1 and
asoc) = 1 for 1<t. af(T)was determined from a set of values 6;=3.3,
logar,=6.0; 8;=269, logar,=2.5;63=21,logar,=-8and 8;=16logar,=-10 with

6; = 1000/(273.1 + T; °C). Intermediate values were obtained by linear interpola-

tion. The parameter o = a (T) was obtained by a spline functior: fit of a (24.41)
0.118, a (44.26) = 0.118, & (74.41) = 0.118, & (91.32) = 0.146, & (103.1) = 0.171 and

(120) = 0.239. T(T) was obtained by a spline function fit of 7 (20) = 31.42, 1 (26) =
31.3,1(38) = 31.03, 7 (50) = 30.8, 1 (86.2) = 30, T (108) = 22.16, T (114) = 20, and 1 (120)
17.86. The vertical shift V(T) corresponded to log V(40) = 0.025, log V(129.4)
-0.0031, and log V(200) = -0.21 with linear interpolation for intermediate values.
Finally, the coefficients of thermal expansion were taken to be a| =
0.5 x 10%/1°C, ar = 30 x 10%/1°C for T < 125°C and oy = 10%/1°C, ar = 75 x 10%/1°C,
for 125°C < T < 300°C. To avoid computational difficulties at T = 125°C we as-

N H

sumed smooth transitions in values of oy and at to occur over 124°C<T<126°C.

2.3 Optimal Cool-Down in the Linear Case

The optimization of cool-down can be stated as follows: Given an initial tem-
perature T;, where the composite is stress-free, a final temperature T (Tg < T}), a
finite time interval t; and a thermoviscoelastic stress-strain relation (e.g. equa-
tion (4)), find the "best" time-temperature history T = Tq(t), which minimizes
the residual thermal stresses o(ty). In all previous studies [6]-[9], which concerned
linear behavior, namely a = a(T) in equation (5), it was found that Tq(t) under-
goes sharp drops at t =0, from Tj to T, and at t;, from Tgq(ty) to Tg,

and it varies monotonically and smoothly over the range o < t < t;. Specifically

for the linear case expressed in equation (4) (namely a = a(T) #a(T;o)) the initial
drop is given by



V](To )a(To)

To-Ti= -
a,(To)Vl(To) - Vl (To)a(To)

(6)

which is a transcendental equation in the unknown T,. Beyond the initial drop,
the optimal path Tq(t) is governed by the integro-differential equation

d Ta®) __Eftt) 2 [vi'(T-Tp + vy
dt

; ; 7
E(tt) 5 {a" [Vll (T-Tp) + Vl] -a [V{ (T-Ti) + Vl] }

and primes denote derivatives with respect

tf
: E(tt) = ds
In equation (7), (ks i( [ a(T(s))

to the argument. Note that equation (7) must be solved "backwards” from t = t;
towards t = o since E(t,t;) cannot be evaluated without a-priori knowledge of the
solution, with the exception of E(t,t) = E(o) - which is known. The procedure is

to guess Tq (7), solve equation (7) numerically and evaluate T(0), then adjust the

guess value of Tglt;) iteratively until we obtain T(o) = T, which matches the root
of equation (6).

2.4 Non-Linear Optimal Cool-Down

(a) The Three Element Model as a Prototype Case.

Consider first the linear viscoelastic case with E(t)=C, + D, exp (‘t/)h},
a(T)=exp(-T/A+B) and V; = V, = 1. Straightforward manipulations yield [6]:

To=T-A, Ta(t) = AB - Ino(t)] (8)

where 6(t)=t/A + expC,and C=B+1-T;/A. The residual thermal stresses dur-
ing optimal cool-down are given by

(1-v) o (t)/a = A{Co[In 6(t) + Ty /A-B] +Do| (9a)

or
olt)=-kTalt) + kT + m A (9b)

where k = aE(es)/(1-v): m = aE(0)/(1-). Introduce non-linearity by considering

a=a(T,c)=exp(-T/A+B-[3c;) B>o (10)




The optimal cooling-path can be obtained by iteration, using the linear results (8)

and (9) as initial guesses which are denoted by A(®, B{®, To®), 6®. Namely, in-
sert the linear result (9) into equation (10). After straightforward manipulations
we obtain

a = (T,0) = exp (-T/AD+B") (11)

where A= A©/(18kAC)  B= B [1B(kT+mAC)/BO] with AC=A,
B® = B. The primary significance of expression (11) is that it no longer con-
tains the stress ¢ explicitly, hence we can write a(T,6)=a™T), and aXT) is of the
same form as a(T). Consequently, To™" (t) and oM (T) will retain the same forms
as (8) and (9), but with A and B replacing A and B. At this stage, we substitute
oUt) into equation (10) and obtain a revised a[T,o) which, as can be readily seen,

is of the form a@(T) = exp {-T"/A@+B?) where A=Al and B = B©

11-B(kT; + mA?) /B©)]. An additional substitution yields A® = A? and B® = B?
indicating convergence after three iterations. The optimal path for the three el-
ement model with viscoelastic non-linearity introduced through expression (10)
1s

Talt)= A [ In¢(t)} ,T(}(O+)=T]'X (12)

—~ ~ ~ 7 -~ ~ —~
where A=A/(1-pkA) , B=B[1- B(kTi+mA)/B], and 6it)=t/A+ exp (1+B-T;/Al
The analytic solution (12) and the iteration scheme serve as a model and a
verification check for the numerical scheme which follows.

(b) Optimal Cool-Down of [0/90]s APC-2 Composites.

The optimal temperature path was obtained numerically, by means of a special-
purpose, custom-made computational sub-routine. The procedure was as
follows:

Step 1: Consider linear viscoelastic behavior, with response functions E(t),a,a(T)
and V(T) determined from reduced experimental data and with prescribed T;, T

and t;, Employ equation (6) to determine To= T(0*) and solve (7) numerically to
obtain Tq(t) , where Tgt;)is chosen iteratively until a solution of (7) yields

Talo*) = T, . Denote Tglt) by Ty it) .

Step 2: Compute the residual thermal stress o(t), denoted by o°At), due to cool-
(o
down along ToX) .




Step 3: Relate o/°Xt) to T(g)(t) to form ot©)=F°(T{®)

Step 4: Consider the non-linear shift factor function a(T;6) which corre-sponds to
the reduced data for APC-2. Along the linear optimal path this function is

a(T{; F°XT®))) which can be expressed as a(1XT).

Step 5: Repeat steps 1, 2, 3, and 4 with a(T) replaced by a(lT) to obtain ) with
Tg)(t), o), dV=FUTV) and alT) respectively .

Continue until the attainment of a prescribed convergence, say

Tg+l)(t)= Tg"(t)+dt) , |dt)] < a given tolerarice. Note the following observa-
tions:

1. The solution of equation (7) is, in general, unstable numerically. The optimal
path undergoes rapid drops over short time-intervals, yielding vast variations in
a(T). Consequently, it is necessary to employ non-uniform time intervals when
integrating equation (7).

2. The numerical correlation o = F(T) and its incorporation into a(T;0) —
a(T;F(T)) - &lT), as indicated in steps 3 and 4 above, require smoothing opera-

tions to provide reliable values for the derivatives of alT) to be used in equation
(7).

3. We have no mathematically grounded proof that the iterated optimization
scheme must converge, and obviously no proof of uniqueness. For the APC-2
data at hand, convergence was attained after about 4-5 iterations. The validity of
our results was verified at least partially by introducing several arbitrary, small

disturbances in the optimal path and comparing oft;). In all cases the resulting
values of olt;) exceeded the optimal value.

3. RESULTS AND CONCLUDING REMARKS

Results for optimal cool-down paths, Tqlt) vs. t, are shown in figures 3 and 4 for
a cooling time t;= 100 min with initial, stress-free, temperatures T| = 250°C and
300°C , respectively, and Tg = 30°C. These figures contain results for the three
thermorheological sub-cases: the "simple” case (V=V;=Vy=1)and two
"complex” cases (V=Vj, Va=1and V=V, Vi =1), as well as three analogous
non-linear cases with a = a(T;6). Figures 5 and 6 exhibit residual stress build-ups




during optimal cool-downs which correspond to the six sub-cases shown in
Figures 3 and 4.

Figures 3-6 demonstrate the important role played by the various material func-
tions which relate the thermoviscoelastic behavior of APC-2. Variations among
those functions, as well as uncertainties concerning the stress free temperature
lead to predictions of residual thermal stress which vary between 9.1 and 13.15
ksi, the ultimate transverse stress at room temperature being about 11.5 ksi. It is
therefore desirable to extend the experimental characterization work of Xiao [1] to
include a higher range of temperatures as well as transient temperature response
to distinguish between the functions V,(T) and V,(T).
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